Convergent evolution in biosynthesis of cyanogenic defence compounds in plants and insects
نویسندگان
چکیده
For more than 420 million years, plants, insects and their predators have co-evolved based on a chemical arms race including deployment of refined chemical defence systems by each player. Cyanogenic glucosides are produced by numerous plants and by some specialized insects and serve an important role as defence compounds in these intimate interactions. Burnet moth larvae are able to sequester cyanogenic glucosides from their food plant as well as to carry out de novo biosynthesis. Here we show that three genes (CYP405A2, CYP332A3 and UGT33A1) encode the entire biosynthetic pathway of cyanogenic glucosides in the Burnet moth Zygaena filipendulae. In both plants and insects, convergent evolution has led to two multifunctional P450 enzymes each catalysing unusual reactions and a glucosyl-transferase acting in sequence to catalyse cyanogenic glucoside formation. Thus, plants and insects have independently found a way to package a cyanide time bomb to fend off herbivores and predators.
منابع مشابه
Corrigendum: Convergent evolution in biosynthesis of cyanogenic defence compounds in plants and insects
متن کامل
Spatial separation of the cyanogenic β-glucosidase ZfBGD2 and cyanogenic glucosides in the haemolymph of Zygaena larvae facilitates cyanide release
Low molecular weight compounds are typically used by insects and plants for defence against predators. They are often stored as inactive β-glucosides and kept separate from activating β-glucosidases. When the two components are mixed, the β-glucosides are hydrolysed releasing toxic aglucones. Cyanogenic plants contain cyanogenic glucosides and release hydrogen cyanide due to such a well-charact...
متن کاملA novel cytochrome P450, CYP3201B1, is involved in (R)‐mandelonitrile biosynthesis in a cyanogenic millipede
Specialized arthropods and more than 2500 plant species biosynthesize hydroxynitriles and release hydrogen cyanide as a defensive mechanism. The millipede Chamberlinius hualienensis accumulates (R)-mandelonitrile as a cyanide precursor. Although biosynthesis of hydroxynitriles in cyanogenic plants and in an insect are extensively studied, (R)-mandelonitrile biosynthesis in cyanogenic millipedes...
متن کاملThe biosynthetic gene cluster for the cyanogenic glucoside dhurrin in Sorghum bicolor contains its co-expressed vacuolar MATE transporter
Genomic gene clusters for the biosynthesis of chemical defence compounds are increasingly identified in plant genomes. We previously reported the independent evolution of biosynthetic gene clusters for cyanogenic glucoside biosynthesis in three plant lineages. Here we report that the gene cluster for the cyanogenic glucoside dhurrin in Sorghum bicolor additionally contains a gene, SbMATE2, enco...
متن کاملCyanogenesis in plants and arthropods.
Cyanogenic glucosides are phytoanticipins known to be present in more than 2500 plant species. They are regarded as having an important role in plant defense against herbivores due to bitter taste and release of toxic hydrogen cyanide upon tissue disruption, but recent investigations demonstrate additional roles as storage compounds of reduced nitrogen and sugar that may be mobilized when deman...
متن کامل